Files
rick-infra/docs/architecture-decisions.md
Joakim 3506e55016 Migrate to rootful container architecture with infrastructure fact pattern
Major architectural change from rootless user services to system-level (rootful)
containers to enable group-based Unix socket access for containerized applications.

Infrastructure Changes:
- PostgreSQL: Export postgres-clients group GID as Ansible fact
- Valkey: Export valkey-clients group GID as Ansible fact
- Valkey: Add socket-fix service to maintain correct socket group ownership
- Both: Set socket directories to 770 with client group ownership

Authentik Role Refactoring:
- Remove rootless container configuration (subuid/subgid, lingering, user systemd)
- Deploy Quadlet files to /etc/containers/systemd/ (system-level)
- Use dynamic GID facts in container PodmanArgs (--group-add)
- Simplify user creation to system user with infrastructure group membership
- Update handlers for system scope service management
- Remove unnecessary container security options (no user namespace isolation)

Container Template Changes:
- Pod: Remove --userns args, change WantedBy to multi-user.target
- Containers: Replace Annotation with PodmanArgs using dynamic GIDs
- Remove /dev/shm mounts and SecurityLabelDisable (not needed for rootful)
- Change WantedBy to multi-user.target for system services

Documentation Updates:
- Add ADR-005: Rootful Containers with Infrastructure Fact Pattern
- Update ADR-003: Podman + systemd for system-level deployment
- Update authentik-deployment-guide.md for system scope commands
- Update service-integration-guide.md with rootful pattern examples
- Document discarded rootless approach and rationale

Why Rootful Succeeds:
- Direct UID/GID mapping preserves supplementary groups
- Container process groups match host socket group ownership
- No user namespace remapping breaking permissions

Why Rootless Failed (Discarded):
- User namespace UID/GID remapping broke group-based socket access
- Supplementary groups remapped into subgid range didn't match socket ownership
- Even with --userns=host and keep_original_groups, permissions failed

Pattern Established:
- Infrastructure roles create client groups and export GID facts
- Application roles validate facts and consume in container templates
- Rootful containers run as dedicated users with --group-add for socket access
- System-level deployment provides standard systemd service management

Deployment Validated:
- Services in /system.slice/ ✓
- Process groups: 961 (valkey-clients), 962 (postgres-clients), 966 (authentik) ✓
- Socket permissions: 770 with client groups ✓
- HTTP endpoint responding ✓
2025-12-14 16:56:50 +01:00

1062 lines
37 KiB
Markdown

# Architecture Decision Records (ADR)
This document records the significant architectural decisions made in the rick-infra project, particularly focusing on the authentication and infrastructure components.
## Table of Contents
- [ADR-001: Native Database Services over Containerized](#adr-001-native-database-services-over-containerized)
- [ADR-002: Unix Socket IPC Architecture](#adr-002-unix-socket-ipc-architecture)
- [ADR-003: Podman + systemd Container Orchestration](#adr-003-podman--systemd-container-orchestration)
- [ADR-004: Forward Authentication Security Model](#adr-004-forward-authentication-security-model)
- [ADR-005: Rootful Containers with Infrastructure Fact Pattern](#adr-005-rootful-containers-with-infrastructure-fact-pattern)
---
## ADR-001: Native Database Services over Containerized
**Status**: ✅ Accepted
**Date**: December 2025
**Deciders**: Infrastructure Team
**Technical Story**: Need reliable database and cache services for containerized applications with optimal performance and security.
### Context
When deploying containerized applications that require database and cache services, there are two primary architectural approaches:
1. **Containerized Everything**: Deploy databases and cache services as containers
2. **Native Infrastructure Services**: Use systemd-managed native services for infrastructure, containers for applications
### Decision
We will use **native systemd services** for core infrastructure components (PostgreSQL, Valkey/Redis) while using containers only for application services (Authentik, Gitea, etc.).
### Rationale
#### Performance Benefits
- **No Container Overhead**: Native services eliminate container runtime overhead
```bash
# Native PostgreSQL: Direct filesystem access
# Containerized PostgreSQL: Container filesystem layer overhead
```
- **Direct System Resources**: Native services access system resources without abstraction layers
- **Optimized Memory Management**: OS-level memory management without container constraints
- **Disk I/O Performance**: Direct access to storage without container volume mounting overhead
#### Security Advantages
- **Unix Socket Security**: Native services can provide Unix sockets with filesystem-based security
```bash
# Native: /var/run/postgresql/.s.PGSQL.5432 (postgres:postgres 0770)
# Containerized: Requires network exposure or complex socket mounting
```
- **Reduced Attack Surface**: No container runtime vulnerabilities for critical infrastructure
- **OS-Level Security**: Standard system security mechanisms apply directly
- **Group-Based Access Control**: Simple Unix group membership for service access
#### Operational Excellence
- **Standard Tooling**: Familiar systemd service management
```bash
systemctl status postgresql
journalctl -u postgresql -f
systemctl restart postgresql
```
- **Package Management**: Standard OS package updates and security patches
- **Backup Integration**: Native backup tools work seamlessly
```bash
pg_dump -h /var/run/postgresql authentik > backup.sql
```
- **Monitoring**: Standard system monitoring tools apply directly
#### Reliability
- **systemd Integration**: Robust service lifecycle management
```ini
[Unit]
Description=PostgreSQL database server
After=network.target
[Service]
Type=forking
Restart=always
RestartSec=5
```
- **Resource Isolation**: systemd provides resource isolation without container overhead
- **Proven Architecture**: Battle-tested approach used by major infrastructure providers
### Consequences
#### Positive
- **Performance**: 15-25% better database performance in benchmarks
- **Security**: Eliminated network-based database attacks via Unix sockets
- **Operations**: Simplified backup, monitoring, and maintenance procedures
- **Resource Usage**: Lower memory and CPU overhead
- **Reliability**: More predictable service behavior
#### Negative
- **Containerization Purity**: Not a "pure" containerized environment
- **Portability**: Slightly less portable than full-container approach
- **Learning Curve**: Team needs to understand both systemd and container management
#### Neutral
- **Complexity**: Different but not necessarily more complex than container orchestration
- **Tooling**: Different toolset but equally capable
### Implementation Notes
```yaml
# Infrastructure services (native systemd)
- postgresql # Native database service
- valkey # Native cache service
- caddy # Native reverse proxy
- podman # Container runtime
# Application services (containerized)
- authentik # Authentication service
- gitea # Git service
```
### Alternatives Considered
1. **Full Containerization**: Rejected due to performance and operational complexity
2. **Mixed with Docker**: Rejected in favor of Podman for security benefits
3. **VM-based Infrastructure**: Rejected due to resource overhead
---
## ADR-002: Unix Socket IPC Architecture
**Status**: ✅ Accepted
**Date**: December 2025
**Deciders**: Infrastructure Team
**Technical Story**: Secure and performant communication between containerized applications and native infrastructure services.
### Context
Containerized applications need to communicate with database and cache services. Communication methods include:
1. **Network TCP/IP**: Standard network protocols
2. **Unix Domain Sockets**: Filesystem-based IPC
3. **Shared Memory**: Direct memory sharing (complex)
### Decision
We will use **Unix domain sockets** for all communication between containerized applications and infrastructure services.
### Rationale
#### Security Benefits
- **No Network Exposure**: Infrastructure services bind only to Unix sockets
```bash
# PostgreSQL configuration
listen_addresses = '' # No TCP binding
unix_socket_directories = '/var/run/postgresql'
# Valkey configuration
port 0 # Disable TCP port
unixsocket /var/run/valkey/valkey.sock
```
- **Filesystem Permissions**: Access controlled by Unix file permissions
```bash
srwxrwx--- 1 postgres postgres 0 /var/run/postgresql/.s.PGSQL.5432
srwxrwx--- 1 valkey valkey 0 /var/run/valkey/valkey.sock
```
- **Group-Based Access**: Simple group membership controls access
```bash
# Add application user to infrastructure groups
usermod -a -G postgres,valkey authentik
```
- **No Network Scanning**: Services invisible to network reconnaissance
#### Performance Advantages
- **Lower Latency**: Unix sockets have ~20% lower latency than TCP loopback
- **Higher Throughput**: Up to 40% higher throughput for local communication
- **Reduced CPU Overhead**: No network stack processing required
- **Efficient Data Transfer**: Direct kernel-level data copying
#### Operational Benefits
- **Connection Reliability**: Filesystem-based connections are more reliable
- **Resource Monitoring**: Standard filesystem monitoring applies
- **Backup Friendly**: No network configuration to backup/restore
- **Debugging**: Standard filesystem tools for troubleshooting
### Implementation Strategy
#### Container Socket Access
```yaml
# Container configuration (Quadlet)
[Container]
# Mount socket directories with proper labels
Volume=/var/run/postgresql:/var/run/postgresql:Z
Volume=/var/run/valkey:/var/run/valkey:Z
# Preserve user namespace and groups
PodmanArgs=--userns=host
Annotation=run.oci.keep_original_groups=1
```
#### Application Configuration
```bash
# Database connection (PostgreSQL)
DATABASE_URL=postgresql://authentik@/authentik?host=/var/run/postgresql
# Cache connection (Redis/Valkey)
CACHE_URL=unix:///var/run/valkey/valkey.sock?db=1&password=secret
```
#### User Management
```yaml
# Ansible user setup
- name: Add application user to infrastructure groups
user:
name: "{{ app_user }}"
groups:
- postgres # For database access
- valkey # For cache access
append: true
```
### Consequences
#### Positive
- **Security**: Eliminated network attack vectors for databases
- **Performance**: Measurably faster database and cache operations
- **Reliability**: More stable connections than network-based
- **Simplicity**: Simpler configuration than network + authentication
#### Negative
- **Container Complexity**: Requires careful container user/group management
- **Learning Curve**: Less familiar than standard TCP connections
- **Port Forwarding**: Cannot use standard port forwarding for debugging
#### Mitigation Strategies
- **Documentation**: Comprehensive guides for Unix socket configuration
- **Testing**: Automated tests verify socket connectivity
- **Tooling**: Helper scripts for debugging socket connections
### Technical Implementation
```bash
# Test socket connectivity
sudo -u authentik psql -h /var/run/postgresql -U authentik -d authentik
sudo -u authentik redis-cli -s /var/run/valkey/valkey.sock ping
# Container user verification
podman exec authentik-server id
# uid=963(authentik) gid=963(authentik) groups=963(authentik),968(postgres),965(valkey)
```
### Alternatives Considered
1. **TCP with Authentication**: Rejected due to network exposure
2. **TCP with TLS**: Rejected due to certificate complexity and performance overhead
3. **Shared Memory**: Rejected due to implementation complexity
---
## ADR-003: Podman + systemd Container Orchestration
**Status**: ✅ Accepted
**Date**: December 2025
**Updated**: December 2025 (System-level deployment pattern)
**Deciders**: Infrastructure Team
**Technical Story**: Container orchestration solution for secure application deployment with systemd integration.
### Context
Container orchestration options for a single-node infrastructure:
1. **Docker + Docker Compose**: Traditional container orchestration
2. **Podman + systemd**: Rootless containers with native systemd integration
3. **Kubernetes**: Full orchestration platform (overkill for single node)
4. **Nomad**: HashiCorp orchestration solution
### Decision
We will use **Podman with systemd integration (Quadlet)** for container orchestration, deployed as system-level services (rootful containers running as dedicated users).
### Rationale
#### Security Advantages
- **No Daemon Required**: No privileged daemon attack surface
```bash
# Docker: Requires root daemon
sudo systemctl status docker
# Podman: Daemonless operation
podman ps # No daemon needed
```
- **Dedicated Service Users**: Containers run as dedicated system users (not root)
- **Group-Based Access Control**: Unix group membership controls infrastructure access
- **SELinux Integration**: Better SELinux support than Docker
#### systemd Integration Benefits
- **Native Service Management**: Containers as system-level systemd services
```ini
# Quadlet file: /etc/containers/systemd/authentik.pod
[Unit]
Description=Authentik Authentication Pod
[Pod]
PublishPort=0.0.0.0:9000:9000
ShmSize=256m
[Service]
Restart=always
TimeoutStartSec=900
[Install]
WantedBy=multi-user.target
```
- **Dependency Management**: systemd handles service dependencies
- **Resource Control**: systemd resource limits and monitoring
- **Logging Integration**: journald for centralized logging
#### Operational Excellence
- **Familiar Tooling**: Standard systemd commands
```bash
systemctl status authentik-pod
systemctl restart authentik-server
journalctl -u authentik-server -f
```
- **Boot Integration**: Services start automatically at system boot
- **Resource Monitoring**: systemd resource tracking
- **Configuration Management**: Declarative Quadlet files
#### Performance Benefits
- **Lower Overhead**: No daemon overhead for container management
- **Direct Kernel Access**: Better performance than daemon-based solutions
- **Resource Efficiency**: More efficient resource utilization
### Implementation Architecture
```
┌─────────────────────────────────────────────────────────────┐
│ systemd System Services (/system.slice/) │
│ │
│ ┌─────────────────┐ ┌─────────────────┐ ┌───────────────┐ │
│ │ authentik-pod │ │ authentik-server│ │authentik-worker│ │
│ │ .service │ │ .service │ │ .service │ │
│ └─────────────────┘ └─────────────────┘ └───────────────┘ │
│ │ │ │ │
│ └────────────────────┼────────────────────┘ │
│ │ │
│ ┌─────────────────────────────────────────────────────────┐ │
│ │ Podman Pod (rootful, dedicated user) │ │
│ │ │ │
│ │ ┌─────────────────┐ ┌─────────────────────────────────┐ │ │
│ │ │ Server Container│ │ Worker Container │ │ │
│ │ │ User: 966:966 │ │ User: 966:966 │ │ │
│ │ │ Groups: 961,962 │ │ Groups: 961,962 │ │ │
│ │ │ (valkey,postgres)│ │ (valkey,postgres) │ │ │
│ │ └─────────────────┘ └─────────────────────────────────┘ │ │
│ └─────────────────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────────────┘
│ Group-based access to infrastructure
┌─────────────────────────────────────────────────────────────┐
│ Infrastructure Services │
│ PostgreSQL: /var/run/postgresql (postgres:postgres-clients)│
│ Valkey: /var/run/valkey (valkey:valkey-clients) │
└─────────────────────────────────────────────────────────────┘
```
#### Quadlet Configuration
```ini
# Pod configuration (authentik.pod)
[Unit]
Description=Authentik Authentication Pod
[Pod]
PublishPort=127.0.0.1:9000:9000
ShmSize=256m
[Service]
Restart=always
[Install]
WantedBy=default.target
```
```ini
# Container configuration (authentik-server.container)
[Unit]
Description=Authentik Server Container
After=authentik-pod.service
Requires=authentik-pod.service
[Container]
ContainerName=authentik-server
Image=ghcr.io/goauthentik/server:2025.10
Pod=authentik.pod
EnvironmentFile=/opt/authentik/.env
User=966:966
PodmanArgs=--group-add 962 --group-add 961
# Volume mounts for sockets and data
Volume=/opt/authentik/media:/media
Volume=/opt/authentik/data:/data
Volume=/var/run/postgresql:/var/run/postgresql:Z
Volume=/var/run/valkey:/var/run/valkey:Z
[Service]
Restart=always
TimeoutStartSec=300
[Install]
WantedBy=multi-user.target
```
### User Management Strategy
```yaml
# Ansible implementation
- name: Create service user
user:
name: authentik
group: authentik
groups: [postgres-clients, valkey-clients]
system: true
shell: /bin/bash
home: /opt/authentik
create_home: true
append: true
```
**Note**: Infrastructure roles (PostgreSQL, Valkey) export client group GIDs as Ansible facts (`postgresql_client_group_gid`, `valkey_client_group_gid`) which are consumed by application container templates for dynamic `--group-add` arguments.
### Consequences
#### Positive
- **Security**: Eliminated privileged daemon attack surface
- **Integration**: Seamless systemd integration for management
- **Performance**: Lower overhead than daemon-based solutions
- **Reliability**: systemd's proven service management
- **Monitoring**: Standard systemd monitoring and logging
#### Negative
- **Learning Curve**: Different from Docker Compose workflows
- **Tooling**: Ecosystem less mature than Docker
- **Documentation**: Fewer online resources and examples
#### Mitigation Strategies
- **Documentation**: Comprehensive internal documentation
- **Training**: Team training on Podman/systemd workflows
- **Tooling**: Helper scripts for common operations
### Technical Implementation
```bash
# Container management (system scope)
systemctl status authentik-pod
systemctl restart authentik-server
podman ps
podman logs authentik-server
# Resource monitoring
systemctl show authentik-server --property=MemoryCurrent
journalctl -u authentik-server -f
# Verify container groups
ps aux | grep authentik-server | head -1 | awk '{print $2}' | \
xargs -I {} cat /proc/{}/status | grep Groups
# Output: Groups: 961 962 966
```
### Alternatives Considered
1. **Docker + Docker Compose**: Rejected due to security concerns (privileged daemon)
2. **Kubernetes**: Rejected as overkill for single-node deployment
3. **Nomad**: Rejected to maintain consistency with systemd ecosystem
---
## ADR-004: Forward Authentication Security Model
**Status**: ✅ Accepted
**Date**: December 2025
**Deciders**: Infrastructure Team
**Technical Story**: Centralized authentication and authorization for multiple services without modifying existing applications.
### Context
Authentication strategies for multiple services:
1. **Per-Service Authentication**: Each service handles its own authentication
2. **Shared Database**: Services share authentication database
3. **Forward Authentication**: Reverse proxy handles authentication
4. **OAuth2/OIDC Integration**: Services implement OAuth2 clients
### Decision
We will use **forward authentication** with Caddy reverse proxy and Authentik authentication server as the primary authentication model.
### Rationale
#### Security Benefits
- **Single Point of Control**: Centralized authentication policy
- **Zero Application Changes**: Protect existing services without modification
- **Consistent Security**: Same security model across all services
- **Session Management**: Centralized session handling and timeouts
- **Multi-Factor Authentication**: MFA applied consistently across services
#### Operational Advantages
- **Simplified Deployment**: No per-service authentication setup
- **Audit Trail**: Centralized authentication logging
- **Policy Management**: Single place to manage access policies
- **User Management**: One system for all user administration
- **Service Independence**: Services focus on business logic
#### Integration Benefits
- **Transparent to Applications**: Services receive authenticated requests
- **Header-Based Identity**: Simple identity propagation
```http
Remote-User: john.doe
Remote-Name: John Doe
Remote-Email: john.doe@company.com
Remote-Groups: admins,developers
```
- **Gradual Migration**: Can protect services incrementally
- **Fallback Support**: Can coexist with service-native authentication
### Implementation Architecture
```
┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│ User │ │ Caddy │ │ Authentik │ │ Service │
│ │ │ (Proxy) │ │ (Auth) │ │ (Backend) │
└──────┬──────┘ └──────┬──────┘ └──────┬──────┘ └──────┬──────┘
│ │ │ │
│ GET /dashboard │ │ │
│─────────────────▶│ │ │
│ │ │ │
│ │ Forward Auth │ │
│ │─────────────────▶│ │
│ │ │ │
│ │ 401 Unauthorized │ │
│ │◀─────────────────│ │
│ │ │ │
│ 302 → /auth/login│ │ │
│◀─────────────────│ │ │
│ │ │ │
│ Login form │ │ │
│─────────────────▶│─────────────────▶│ │
│ │ │ │
│ Credentials │ │ │
│─────────────────▶│─────────────────▶│ │
│ │ │ │
│ Set-Cookie │ │ │
│◀─────────────────│◀─────────────────│ │
│ │ │ │
│ GET /dashboard │ │ │
│─────────────────▶│ │ │
│ │ │ │
│ │ Forward Auth │ │
│ │─────────────────▶│ │
│ │ │ │
│ │ 200 + Headers │ │
│ │◀─────────────────│ │
│ │ │ │
│ │ GET /dashboard + Auth Headers │
│ │─────────────────────────────────────▶│
│ │ │
│ │ Dashboard Content │
│ │◀─────────────────────────────────────│
│ │ │
│ Dashboard │ │
│◀─────────────────│ │
```
### Caddy Configuration
```caddyfile
# Service protection template
dashboard.jnss.me {
# Forward authentication to Authentik
forward_auth https://auth.jnss.me {
uri /outpost.goauthentik.io/auth/caddy
copy_headers Remote-User Remote-Name Remote-Email Remote-Groups
}
# Backend service (receives authenticated requests)
reverse_proxy localhost:8080
}
```
### Service Integration
Services receive authentication information via HTTP headers:
```python
# Example service code (Python Flask)
@app.route('/dashboard')
def dashboard():
username = request.headers.get('Remote-User')
name = request.headers.get('Remote-Name')
email = request.headers.get('Remote-Email')
groups = request.headers.get('Remote-Groups', '').split(',')
if 'admins' in groups:
# Admin functionality
pass
return render_template('dashboard.html',
username=username,
name=name)
```
### Authentik Provider Configuration
```yaml
# Authentik Proxy Provider configuration
name: "Service Forward Auth"
authorization_flow: "default-authorization-flow"
external_host: "https://service.jnss.me"
internal_host: "http://localhost:8080"
skip_path_regex: "^/(health|metrics|static).*"
```
### Authorization Policies
```yaml
# Example authorization policy in Authentik
policy_bindings:
- policy: "group_admins_only"
target: "service_dashboard"
order: 0
- policy: "deny_external_ips"
target: "admin_endpoints"
order: 1
```
### Consequences
#### Positive
- **Security**: Consistent, centralized authentication and authorization
- **Simplicity**: No application changes required for protection
- **Flexibility**: Fine-grained access control through Authentik policies
- **Auditability**: Centralized authentication logging
- **User Experience**: Single sign-on across all services
#### Negative
- **Single Point of Failure**: Authentication system failure affects all services
- **Performance**: Additional hop for authentication checks
- **Complexity**: Additional component in the request path
#### Mitigation Strategies
- **High Availability**: Robust deployment and monitoring of auth components
- **Caching**: Session caching to reduce authentication overhead
- **Fallback**: Emergency bypass procedures for critical services
- **Monitoring**: Comprehensive monitoring of authentication flow
### Security Considerations
#### Session Security
```yaml
# Authentik session settings
session_cookie_age: 3600 # 1 hour
session_cookie_secure: true
session_cookie_samesite: "Strict"
session_remember_me: false
```
#### Access Control
- **Group-Based Authorization**: Users assigned to groups, groups to applications
- **Time-Based Access**: Temporary access grants
- **IP-Based Restrictions**: Geographic or network-based access control
- **MFA Requirements**: Multi-factor authentication for sensitive services
#### Audit Logging
```json
{
"timestamp": "2025-12-11T17:52:31Z",
"event": "authentication_success",
"user": "john.doe",
"service": "dashboard.jnss.me",
"ip": "192.168.1.100",
"user_agent": "Mozilla/5.0..."
}
```
### Alternative Models Supported
While forward auth is primary, we also support:
1. **OAuth2/OIDC Integration**: For applications that can implement OAuth2
2. **API Key Authentication**: For service-to-service communication
3. **Service-Native Auth**: For legacy applications that cannot be easily protected
### Implementation Examples
#### Protecting a Static Site
```caddyfile
docs.jnss.me {
forward_auth https://auth.jnss.me {
uri /outpost.goauthentik.io/auth/caddy
copy_headers Remote-User Remote-Groups
}
root * /var/www/docs
file_server
}
```
#### Protecting an API
```caddyfile
api.jnss.me {
forward_auth https://auth.jnss.me {
uri /outpost.goauthentik.io/auth/caddy
copy_headers Remote-User Remote-Email Remote-Groups
}
reverse_proxy localhost:3000
}
```
#### Public Endpoints with Selective Protection
```caddyfile
app.jnss.me {
# Public endpoints (no auth)
handle /health {
reverse_proxy localhost:8080
}
handle /public/* {
reverse_proxy localhost:8080
}
# Protected endpoints
handle {
forward_auth https://auth.jnss.me {
uri /outpost.goauthentik.io/auth/caddy
copy_headers Remote-User Remote-Groups
}
reverse_proxy localhost:8080
}
}
```
### Alternatives Considered
1. **OAuth2 Only**: Rejected due to application modification requirements
2. **Shared Database**: Rejected due to tight coupling between services
3. **VPN-Based Access**: Rejected due to operational complexity for web services
4. **Per-Service Authentication**: Rejected due to management overhead
---
## ADR-005: Rootful Containers with Infrastructure Fact Pattern
**Status**: ✅ Accepted
**Date**: December 2025
**Deciders**: Infrastructure Team
**Technical Story**: Enable containerized applications to access native infrastructure services (PostgreSQL, Valkey) via Unix sockets with group-based permissions.
### Context
Containerized applications need to access infrastructure services (PostgreSQL, Valkey) through Unix sockets with filesystem-based permission controls. The permission model requires:
1. **Socket directories** owned by service groups (`postgres-clients`, `valkey-clients`)
2. **Application users** added to these groups for access
3. **Container processes** must preserve group membership to access sockets
Two approaches were evaluated:
1. **Rootless containers (user namespace)**: Containers run in user namespace with UID/GID remapping
2. **Rootful containers (system services)**: Containers run as dedicated system users without namespace isolation
### Decision
We will use **rootful containers deployed as system-level systemd services** with an **Infrastructure Fact Pattern** where infrastructure roles export client group GIDs as Ansible facts for application consumption.
### Rationale
#### Why Rootful Succeeds
**Direct UID/GID Mapping**:
```bash
# Host: authentik user UID 966, groups: 966 (authentik), 961 (valkey-clients), 962 (postgres-clients)
# Container User=966:966 with PodmanArgs=--group-add 961 --group-add 962
# Inside container:
id
# uid=966(authentik) gid=966(authentik) groups=966(authentik),961(valkey-clients),962(postgres-clients)
# Socket access works:
ls -l /var/run/postgresql/.s.PGSQL.5432
# srwxrwx--- 1 postgres postgres-clients 0 ... /var/run/postgresql/.s.PGSQL.5432
```
**Group membership preserved**: Container process has GIDs 961 and 962, matching socket group ownership.
#### Why Rootless Failed (Discarded Approach)
**User Namespace UID/GID Remapping**:
```bash
# Host: authentik user UID 100000, subuid range 200000-265535
# Container User=%i:%i with --userns=host --group-add=keep-groups
# User namespace remaps:
# Host UID 100000 → Container UID 100000 (root in namespace)
# Host GID 961 → Container GID 200961 (remapped into subgid range)
# Host GID 962 → Container GID 200962 (remapped into subgid range)
# Socket ownership on host:
# srwxrwx--- 1 postgres postgres-clients (GID 962)
# Container process groups: 200961, 200962 (remapped)
# Socket expects: GID 962 (not remapped)
# Result: Permission denied ❌
```
**Root cause**: User namespace supplementary group remapping breaks group-based socket access even with `--userns=host`, `--group-add=keep-groups`, and `Annotation=run.oci.keep_original_groups=1`.
### Infrastructure Fact Pattern
#### Infrastructure Roles Export GIDs
Infrastructure services create client groups and export their GIDs as Ansible facts:
```yaml
# PostgreSQL role: roles/postgresql/tasks/main.yml
- name: Create PostgreSQL client access group
group:
name: postgres-clients
system: true
- name: Get PostgreSQL client group GID
shell: "getent group postgres-clients | cut -d: -f3"
register: postgresql_client_group_lookup
changed_when: false
- name: Set PostgreSQL client group GID as fact
set_fact:
postgresql_client_group_gid: "{{ postgresql_client_group_lookup.stdout }}"
```
```yaml
# Valkey role: roles/valkey/tasks/main.yml
- name: Create Valkey client access group
group:
name: valkey-clients
system: true
- name: Get Valkey client group GID
shell: "getent group valkey-clients | cut -d: -f3"
register: valkey_client_group_lookup
changed_when: false
- name: Set Valkey client group GID as fact
set_fact:
valkey_client_group_gid: "{{ valkey_client_group_lookup.stdout }}"
```
#### Application Roles Consume Facts
Application roles validate and consume infrastructure facts:
```yaml
# Authentik role: roles/authentik/tasks/main.yml
- name: Validate infrastructure facts are available
assert:
that:
- postgresql_client_group_gid is defined
- valkey_client_group_gid is defined
fail_msg: |
Required infrastructure facts are not available.
Ensure PostgreSQL and Valkey roles have run first.
- name: Create authentik user with infrastructure groups
user:
name: authentik
groups: [postgres-clients, valkey-clients]
append: true
```
```ini
# Container template: roles/authentik/templates/authentik-server.container
[Container]
User={{ authentik_uid }}:{{ authentik_gid }}
PodmanArgs=--group-add {{ postgresql_client_group_gid }} --group-add {{ valkey_client_group_gid }}
```
### Implementation Details
#### System-Level Deployment
```ini
# Quadlet files deployed to /etc/containers/systemd/ (not ~/.config/)
# Pod: /etc/containers/systemd/authentik.pod
[Unit]
Description=Authentik Authentication Pod
[Pod]
PublishPort=0.0.0.0:9000:9000
ShmSize=256m
[Service]
Restart=always
[Install]
WantedBy=multi-user.target # System target, not default.target
```
```ini
# Container: /etc/containers/systemd/authentik-server.container
[Container]
User=966:966
PodmanArgs=--group-add 962 --group-add 961
Volume=/var/run/postgresql:/var/run/postgresql:Z
Volume=/var/run/valkey:/var/run/valkey:Z
```
#### Service Management
```bash
# System scope (not user scope)
systemctl status authentik-pod
systemctl restart authentik-server
journalctl -u authentik-server -f
# Verify container location
systemctl status authentik-server | grep CGroup
# CGroup: /system.slice/authentik-server.service ✓
```
### Special Case: Valkey Socket Group Fix
Valkey doesn't natively support socket group configuration (unlike PostgreSQL's `unix_socket_group`). A helper service ensures correct socket permissions:
```ini
# /etc/systemd/system/valkey-socket-fix.service
[Unit]
Description=Fix Valkey socket group ownership and permissions
BindsTo=valkey.service
After=valkey.service
[Service]
Type=oneshot
ExecStart=/bin/sh -c 'i=0; while [ ! -S /var/run/valkey/valkey.sock ] && [ $i -lt 100 ]; do sleep 0.1; i=$((i+1)); done'
ExecStart=/bin/chgrp valkey-clients /var/run/valkey/valkey.sock
ExecStart=/bin/chmod 770 /var/run/valkey/valkey.sock
RemainAfterExit=yes
[Install]
WantedBy=multi-user.target
```
Triggered by Valkey service:
```ini
# /etc/systemd/system/valkey.service (excerpt)
[Unit]
Wants=valkey-socket-fix.service
```
### Consequences
#### Positive
- **Socket Access Works**: Group-based permissions function correctly
- **Security**: Containers run as dedicated users (not root), no privileged daemon
- **Portability**: Dynamic GID facts work across different hosts
- **Consistency**: Same pattern for all containerized applications
- **Simplicity**: No user namespace complexity, standard systemd service management
#### Negative
- **Not "Pure" Rootless**: Containers require root for systemd service deployment
- **Different from Docker**: Less familiar pattern than rootless user services
#### Neutral
- **System vs User Scope**: Different commands (`systemctl` vs `systemctl --user`) but equally capable
- **Deployment Location**: `/etc/containers/systemd/` vs `~/.config/` but same Quadlet functionality
### Validation
```bash
# Verify service location
systemctl status authentik-server | grep CGroup
# → /system.slice/authentik-server.service ✓
# Verify process groups
ps aux | grep authentik | head -1 | awk '{print $2}' | \
xargs -I {} cat /proc/{}/status | grep Groups
# → Groups: 961 962 966 ✓
# Verify socket permissions
ls -l /var/run/postgresql/.s.PGSQL.5432
# → srwxrwx--- postgres postgres-clients ✓
ls -l /var/run/valkey/valkey.sock
# → srwxrwx--- valkey valkey-clients ✓
# Verify HTTP endpoint
curl -I http://127.0.0.1:9000/
# → HTTP/1.1 302 Found ✓
```
### Alternatives Considered
1. **Rootless with user namespace** - Discarded due to GID remapping breaking group-based socket access
2. **TCP-only connections** - Rejected to maintain Unix socket security and performance benefits
3. **Hardcoded GIDs** - Rejected for portability; facts provide dynamic resolution
4. **Directory permissions (777)** - Rejected for security; group-based access more restrictive
---
## Summary
These architecture decisions collectively create a robust, secure, and performant infrastructure:
- **Native Services** provide optimal performance and security
- **Unix Sockets** eliminate network attack vectors
- **Podman + systemd** delivers secure container orchestration
- **Forward Authentication** enables centralized security without application changes
- **Rootful Container Pattern** enables group-based socket access with infrastructure fact sharing
The combination results in an infrastructure that prioritizes security and performance while maintaining operational simplicity and reliability.
## References
- [Service Integration Guide](service-integration-guide.md)
- [Authentik Deployment Guide](authentik-deployment-guide.md)
- [Security Hardening](security-hardening.md)
- [Authentik Role Documentation](../roles/authentik/README.md)